OptAKlim – Optimizing agricultural cropping strategies and measures for climate adaptation

OptAKlim

Figure 1: Model regions: North (Rendsburg-

East (Teltow-Flaeming, Potsdam-Mittelmark);

Eckernfoerde, Schleswig-Flensburg);

Southwest (Heilbronn/Karlsruhe)

Madeleine Paap¹, Sandra Krengel¹, Jörn Strassemeyer¹, Anto Raja Dominic¹, Michael Glemnitz², Claudia Bethwell², Ralf Bloch², Kristina Kirfel², Friederike Schwierz², Joachim Aurbacher³, Janine Müller³, Philip Rabenau³, Tobias Conradt⁴, Christoph Menz⁴, Stefan Lange⁴, Christine von Buttlar⁵

¹Julius Kühn-Institut - Institut für Strategien und Folgenabschätzung, ²Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e. V., ³Justus-Liebig-Universität Gießen, ⁴Potsdam - Institut für Klimafolgenforschung (PIK), ⁵Ingenieurgemeinschaft für Landwirtschaft und Umwelt (IGLU)

OptAKlim (11/2018 – 10/2021) –project aims:

- advancement of agricultural cropping strategies and measures for climate change adaptation, for stregthening the competitiveness of agriculture and contribution to better ecosystem services including the reduction of GHG emissions, considering:
- a) interactions between climate change and plant protection, agricultural productivity and changes within the cropping structure
- trade-off's between climate change adaptation/mitigation and enviromental targets
- developing a web-based information and advisory tool for farmers (SYNOPS-Web+)

Work steps:

1.) analysing the impact of climate change on agricultural cropping systems (current climate & different future climate scenarios Tab. 1), particularly with regard to economics, productivity & plant protection, on regional scale in 3 Model regions: North, East, Southwest (Fig. 1)

Tab. 1: Future Climate Scenarios (PIK)

Model regions	East	North	Southwest
Future Climate Var. 1: Climate protection Scenario			
Spring precipitation (mm)	+4 (-15 to +16)	+ 6 (-20 to +23)	+9 (-11 to +30)
Drought (days)	+3 (-4 to +9)	+2 (-5 to +8)	+2 (-4 to +8)
Heat (days)	+4 (+2 to +8)	+1 (+0 to +2)	+5 (+2 to +9)
Future Climate Var. 2: "Business as usual" Scenario			
Spring precipitation (mm)	+ 23 (+10 to 36)	+ 31 (+10 to +53)	+27(+4 to +56)
Drought (days)	+5 (-6 to +13)	+4 (-5 to +8)	+10 (-6 to +21)
Heat (days)	+11 (+17 to +26)	+4 (+2 to +7)	+24 (+15 to +35)
Winter precipitation	↑	↑	^
Summer precipitation	7	_	7
Generalized temperature	↑	1	^
Extreme precipitation	7	7	7

Workshops & dialog groups per model region:

©JKI/Krengel/Schlage

Impact on plant protection strategies:

• epidemiology e.g. population dynamics, geographical distribution, thermophile pests 1 concerning: fungal diseases (*Puccinia* spp., Fusarium spp.), Aphids (e.g. Sitobion avenae), Cereal leaf beetle (Oulema melanopus, O. lichenis Voet), European corn borer (Ostrinia nubilalis), Western corn rootworm (Diabrotica virgifera), several oilseed rape pests (e.g. cabbage stem flea beetle, Meligethes aeneus)

©Strassemeyer

• **Pesticide use**: efficacy \downarrow , duration of effect \downarrow , changing environmental behavior and toxic potential etc.

3.) Systematic state of the art analysis (literature review) of trade-offs between climate adaptation measures and environmental effects, e.g. sown wildflower strips in maize (Fig.2) \rightarrow improving the biodiversity impact (Tab. 2), reducing the GHGs by using the Strip-Till cultivator in maize (Fig. 3).

Figure 2: wildflower stripes in maize, ©ZALF

Tab. 2: Wildflower stripes in maize: impact on biodiversity (ZALF) Impact on **Biodiversity** Soil Water Air Climate -Nutrient -Erosion adaptation -Breeding bird index - SOM GHG leaching measure etc. etc.

Figure 3: Strip-till cultivator in maize, ©ZALF

- 4.) Stakeholder advisory board at supra regional scale: corporative development of climate friendly cropping systems with stakeholders, to assess the practicability as well as to develop a web-based information and advisory tool for farmes (SYNOPS-Web+)
- 5.) Resulting optimizing cropping variants will be tested exemplarily for feasibility, Integration into the web based extension tool → SYNOPS-Web+

Project financing: Project partners: Bundesanstalt für Landwirtschaft und Ernährung

specific, regional key problems and trade-offs, both ecologically and economically.

